- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bhavsar, Nrupen A (1)
-
Bravo, Mercedes (1)
-
Guha, Sharmistha (1)
-
Jowers, Kay (1)
-
Lin, Xuan (1)
-
McElroy, Lisa (1)
-
McManus, Hannah (1)
-
Peskoe, Sarah (1)
-
Reiter, Jerome P (1)
-
Timmins, Christopher (1)
-
Whitsel, Eric (1)
-
Yang, Lexie Z (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There is a profound need to identify modifiable risk factors to screen and prevent pancreatic cancer. Air pollution, including fine particulate matter (PM2.5), is increasingly recognized as a risk factor for cancer. We conducted a case-control study using data from the electronic health record (EHR) of Duke University Health System, 15-year residential history, NASA satellite fine particulate matter (PM2.5), and neighborhood socioeconomic data. Using deterministic and probabilistic linkage algorithms, we linked residential history and EHR data to quantify long-term PM2.5 exposure. Logistic regression models quantified the association between a 1 interquartile range (IQR) increase in PM2.5 concentration and pancreatic cancer risk. The study included 203 cases and 5027 controls (median age of 59 years, 62% female, 26% Black). Individuals with pancreatic cancer had higher average annual exposure (9.4 μg/m3) as compared to an IQR increase in average annual PM2.5, which was associated with greater odds of pancreatic cancer (odds ratio = 1.20; 95% CI, 1.00-1.44). These findings highlight the link between elevated PM2.5 exposure and increased pancreatic cancer risk. They may inform screening strategies for high-risk populations and guide air pollution policies to mitigate exposure. This article is part of a Special Collection on Environmental Epidemiology.more » « less
An official website of the United States government
